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Question: 1 
   
A data engineering team is using Snowpark Python to build a complex ETL pipeline. They notice that 
certain transformations are not being executed despite being defined in the code. Which of the 
following are potential reasons why transformations in Snowpark might not be executed immediately, 
reflecting the principle of lazy evaluation? Select TWO correct answers. 
 
A. Snowpark operations are only executed when an action (e.g., ‘collect()', ‘show()', is called on the 
DataFrame or when the DataFrame is materialized. 
B. The ‘eager_execution’ session parameter is set to 'True'. 
C. Snowpark automatically executes all transformations as soon as they are defined, regardless of 
whether the results are needed. 
D. Snowpark employs lazy evaluation to optimize query execution by delaying the execution of 
transformations until the results are actually required. 
E. The size of the data being processed exceeds Snowflake's memory limits, causing transformations to 
be skipped. 
 

Answer: A,D     
 
Explanation: 
Snowpark employs lazy evaluation, which means transformations are not executed until an action is 
performed on the DataFrame. This allows Snowflake to optimize the entire query plan before execution. 
Setting ‘eager_execution’ to True does NOT exist in Snowpark Python. Data size exceeding Snowflake's 
limits would result in an error, not skipped transformations. 

Question: 2 
   
You are developing a Snowpark Python application that reads data from a Snowflake table, performs 
several transformations including filtering, aggregation, and joining with another DataFrame, and then 
writes the results back to a new table. You want to optimize the execution plan to minimize data 
movement and processing time. Which of the following strategies would be MOST effective in 
leveraging Snowpark's lazy evaluation capabilities to achieve this optimization? 
 
A. Calling ‘cache()' on the initial DataFrame read from the table to materialize it in memory before any 
transformations. 
B. Defining all transformations in a single, complex SQL query string and using to execute it. 
C. Chaining all the transformations together using DataFrame methods (e.g., 'filter()' , ‘groupBy()' , 
‘join()') and only calling or at the very end. 
D. Calling after each transformation to materialize intermediate results and then creating new 
DataFrames for subsequent operations. 
E. Executing each transformation in separate Python processes using multiprocessing to parallelize the 
workload. 
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Answer: C     
 
Explanation: 
Chaining transformations and delaying execution until the final action allows Snowpark to optimize the 
entire query plan. Caching the initial DataFrame might improve performance in some cases, but it can 
also introduce unnecessary materialization. Defining transformations in a single SQL query string 
bypasses Snowpark's optimization capabilities. Calling ‘collect()' after each transformation defeats the 
purpose of lazy evaluation. Python multiprocessing does not directly interact with Snowpark's query 
optimization. 

Question: 3 
   
Consider the following Snowpark Python code snippet: 
 
A. The final ‘DataFrame’ 'df3’ will only contain rows where ‘coll’ is greater than 10 and ‘c012 is not null. 
B. The code will result in a compilation error because 'df2 is not explicitly materialized before being 
used. 
C. The code will execute without error, and Snowflake's query optimizer will likely combine the two 
‘filter’ operations into a single scan of the table. 
D. Two separate scans of the ‘my_table’ table will always be performed, one for each 'filter' operation. 
E. The code will throw a NullPointerException as null values are not allowed in Snowpark DataFrames. 
 

Answer: C     
 
Explanation: 
Snowpark's lazy evaluation allows the query optimizer to combine multiple filter operations into a single 
scan, improving efficiency. The code will execute successfully because Snowpark does not require 
explicit materialization of intermediate DataFrames. Null values are allowed in Snowpark DataFrames. 

Question: 4 
   
You are building a Snowpark application that involves a UDF. Consider that you are creating UDF as 
follows: 
 
A. UDF registration happens on the client side, before dataframe transformations are evaluated and 
sent to Snowflake. 
B. UDF registration occurs on the server-side, only when a dataframe action such as collect or show is 
called . 
C. The UDF is registered lazily; only when called the first time will it be registered and available in the 
session. 
D. There will be no attempt to register UDF until .collect()' action is performed. 
E. The behaviour of the UDF registration dependends on the size of code in it. 
 

Answer: A     
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Explanation: 
UDFs are registered client-side when created which happens before any dataframe is sent for 
processing. Lazy Evaluation applies to dataframe transformations and not to registration of UDFs. 

Question: 5 
   
You are tasked with building a Snowpark application to perform sentiment analysis on customer reviews 
stored in a Snowflake table named 'CUSTOMER REVIEWS'. The application should be deployed as a UDF. 
The sentiment analysis is performed by a third-party Python library, 'sentiment_analyzer'. Due to 
security constraints, direct internet access is prohibited from within the Snowflake environment. What 
steps are necessary to ensure the 'sentiment_analyzer' library can be used by your Snowpark UDF? 
 
A. Package the ‘sentiment_analyzer’ library into a JAR file and upload it to a Snowflake stage, then 
specify the JAR in the 'imports' parameter of the UDF creation statement. 
B. Package the ‘sentiment_analyzer’ library into a ZIP file and upload it to a Snowflake stage, then 
specify the ZIP in the 'imports' parameter of the UDF creation statement. 
C. Install the ‘sentiment_analyzer’ library using ‘conda install' directly within the Snowpark session 
before creating the UDF. 
D. Request Snowflake support to whitelist the ‘sentiment_analyzer’ library for direct download during 
UDF execution. 
E. Use the ‘packages' parameter in the UDF creation statement to specify the ‘sentiment_analyzer’ 
library from Anaconda. 
 

Answer: E     
 
Explanation: 
The ‘packages' parameter in the UDF creation statement allows specifying Python packages from the 
Anaconda repository, which are then automatically made available to the UDF during execution. This is 
the recommended approach when direct internet access is restricted. Options A and B are incorrect 
because these steps would be used to include a Java library, not a Python library. Option C is incorrect 
because you cannot directly install packages within a Snowpark session in this way. Option D is not a 
standard procedure. 

Question: 6 
   
Consider the following Snowpark Python code snippet: 
 
A.  
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Given this code, which of the following statements are correct? 
B. This code will ovemrite the table if it already exists. 
C. The ‘result_df DataFrame will be persisted to the 'AGGREGATED SALES table in the default schema of 
the user running the code. 
D. The code will fail because there is no call to or on the ‘result_df dataframe and Snowflake performs 
lazy evaluation. 
E. This code will fail because is not a valid method for Snowpark DataFrames. 
 

Answer: B,C     
 
Explanation: 

  ' will indeed 
overwrite the table if it exists. When a schema is not explicitly specified, Snowpark defaults to the 
schema of the user's current session for table creation. No explicit call to an action like 'collect()' or 
show()' is needed to trigger execution, as is an action itself. is a valid operation to persist DataFrames as 
tables in Snowpark. The table name does not strictly need to be fully qualified unless targeting a schema 
different from the user's default. 

Question: 7 
   
You have a Snowpark DataFrame named 'orders df with columns 'order id', 'customer id', 'order date', 
and 'total amount'. You need to create a new DataFrame that contains only the 'customer_id" and the 
total number of orders placed by each customer. However, you want to perform this aggregation in 
parallel using a user-defined function (UDF) to improve performance. Which approach is MOST efficient 
and CORRECT? 
 
A. Create a UDF that takes a customer ID as input and returns the count of orders for that customer, 
then apply this UDF to each distinct customer ID using ‘map'. 
B. Create a UDF that performs the entire aggregation and call it with ‘orders_df. The UDF uses a Pandas 
DataFrame internally to perform the count. 
C. Use ‘groupBy' to group by 'customer_id' and then use the 'count' aggregate function. Do not use a 
UDF. 
D. Create a UDF that takes an iterator of order IDs and returns the count. Apply this UDF to each 
partition of the DataFrame using ‘maplnPartitions’ . 
E. Create a UDF that calculates the mode of total_amount, then apply the UDF to the DataFrame using 
‘select'. 
 

Answer: C     
 
Explanation: 
The most efficient and correct approach is to use the built-in ‘groupBy’ and ‘count' functions. These 
functions are optimized for Snowflake's architecture and will generally outperform UDF-based solutions 
for simple aggregations. Using UDFs for simple tasks introduces overhead and can negate any potential 
performance benefits. While options A, B and D could achieve the result, they are less efficient. Option E 
is irrelevant to the problem. 
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Question: 8 
   
You are working with a Snowpark DataFrame representing sensor data. The DataFrame contains 
columns like 'timestamp', 'sensor id' , and 'value'. You need to perform a complex windowing operation 
to calculate the moving average of the 'value' for each 'sensor id' over a 5-minute window, but only for 
data points where the 'value' is greater than a threshold. The window should be defined based on the 
'timestamp' column. What is the most efficient and correct approach to implement this using Snowpark 
DataFrames? 
 
A. Use a combination of 'filter' to apply the threshold condition, 'Window.partitionBy’ and 
'Window.orderBy’ to define the window, and ‘avg’ window function to calculate the moving average. 
B. First, collect the entire DataFrame into a Pandas DataFrame, then use Pandas windowing functions to 
calculate the moving average. 
C. Create a UDF that takes a list of timestamps and values as input and returns the moving average. 
Apply this UDF to the entire DataFrame. 
D. Use a loop to iterate over each 'sensor_id' , filter the DataFrame for that sensor, calculate the moving 
average using Pandas windowing functions, and then combine the results. 
E. First apply the moving average calculation to the DataFrame and then filter for rows with values 
exceeding the threshold, since calculations are performed in order. 
 

Answer: A     
 
Explanation: 
The most efficient and correct approach is to use Snowpark's built-in windowing functions. Applying the 
threshold using 'filter' before the windowing operation reduces the amount of data processed by the 
window function, improving performance. Using 'Window.partitionBy’ and 'Window.orderBy’ correctly 
defines the window based on 'sensor_id' and 'timestamp', respectively. Using 'avg’ window function 
calculates the moving average within the defined window. Options B, C, and D are less efficient because 
they involve transferring data to the client side (Pandas) or using UDFs, which can introduce overhead. 
Option E reverses the correct process. 

Question: 9 
   
A data engineering team is using Snowpark Python to build a data pipeline. They need to create a User-
Defined Function (UDF) that 
transforms a JSON string column representing customer information into a STRUCT type containing 
flattened fields for 'name', 'age', and 'city'. The UDF should handle null values gracefully and return NULL 
if the input JSON is invalid or if the 'name' field is missing. Considering performance implications and 
error handling, which of the following approaches is MOST optimal for defining and registering this UDF? 
 
A. Using ‘snowflake.snowpark.functions.udf with and handling JSON parsing and field extraction using 
standard Python libraries within the UDF, returning a JSON string representation of the STRUCT. 
B. Using ‘snowflake.snowpark.functions.udf with defining the STRUCT schema explicitly, and handling 
JSON parsing and field extraction using the ‘snowflake.snowpark.functions.parse_json’ function. Return 
None for invalid json. 
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C. Using ‘session.register_function’ to register a Python function as a UDF with and manually 
constructing a VARIANT object in Python from the extracted JSON fields. 
D. Using ‘snowflake.snowpark.functions.sproc’ to create a stored procedure that performs the JSON 
transformation and returns the transformed data. 
E. Using ‘snowflake.snowpark.functions.udf with and relying solely on Snowflake's built-in JSON 
functions within the UDF, even for complex transformations, and handling exceptions with try-except 
blocks within the UDF to return NULL. 
 

Answer: B     
 
Explanation: 
Option B is the most optimal. Using allows Snowpark to understand the schema of the returned data, 
enabling efficient type checking and query optimization. ‘snowflake.snowpark.functions.parse_json’ 
leverages Snowflake's internal JSON parsing capabilities, leading to better performance. Returning None 
from UDF handles nulls gracefully. Other options either involve less efficient StringType return types, 
manual VARIANT object creation which is less type-safe, or suggest stored procedures when a simple 
UDF is sufficient. 

Question: 10 
   
A Snowpark application needs to process large volumes of sensor data stored in a Snowflake table 
named , which includes columns , ‘timestamp’ , and The application must calculate a rolling average of 
for each over a 5-minute window. The data is not perfectly ordered by 'timestamp' within each 
'sensor_id'. What is the MOST efficient and accurate way to implement this rolling average calculation 
using Snowpark? 
 
A. Using after applying a filter to select only the data within the 5-minute window, updating the filter for 
each new window. 
B. Using a Window specification with ‘orderBy('timestamp')' and 
‘rowsBetween(Window.unboundedPreceding, Window.currentRow)' to calculate the cumulative 
average, then subtracting the average from 5 minutes ago. The query will then be grouped on the 
sensor id. 
C. Using a Window specification with ‘orderBy('timestamp')' and 
‘rowsBetween(Window.unboundedPreceding, Window.currentRow)' in conjunction with and a UDF to 
manually calculate the rolling average within each group. 
D. Using a Window specification with 0)' and the 'avg()' window function. (Where ‘to_seconds’ converts 
a duration to seconds) 
E. Implementing a Python UDTF (User-Defined Table Function) that iterates through the data for each 
calculates the rolling average manually, and emits the results as rows. 
 

Answer: D     
 
Explanation: 
Option D is the most efficient and accurate. ‘partitionBy('sensor_id')' ensures that the rolling average is 
calculated separately for each sensor. ‘orderBy('timestamp'Y orders the data within each partition by 
timestamp. 0)' defines the 5- minute window relative to the current row, accurately capturing all 
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readings within that window even if they are slightly out of order. ‘avg(Y then efficiently calculates the 
average within that window. Other options are either less efficient (e.g., UDTF iteration) or less accurate 
(e.g., incorrect window definitions, filtering). 

Question: 11 
   
You are tasked with optimizing a Snowpark Python application that performs complex data 
transformations on a large dataset. The application is running slower than expected, and you suspect 
that data serialization and transfer between the Snowpark client and the Snowflake engine are 
bottlenecks. Which of the following strategies could you implement to improve performance? (Select all 
that apply.) 
 
A. Minimize the amount of data transferred between the client and the engine by pushing down as 
much computation as possible to Snowflake using Snowpark DataFrame operations. 
B. Utilize smaller batch sizes when writing data back to Snowflake to reduce memory pressure on the 
client. 
C. Create and utilize temporary tables within Snowflake to store intermediate results of complex 
transformations. 
D. Convert all dataframes to Pandas dataframes locally and perform data manipulation with Pandas 
methods to take advantage of local resources. 
E. Increase the configuration parameter to maximize parallelism within the Snowpark engine without 
considering resources or potential bottleneck. 
 

Answer: A,B,C     
 
Explanation: 
Options A, B, and C are correct strategies. Pushing down computation (A) reduces data transfer. Using 
smaller batch sizes (B) can reduce memory pressure, especially for large datasets. Using temporary 
tables (C) allows intermediate results to be stored and processed entirely within Snowflake, avoiding 
unnecessary data transfer. Option D is incorrect because converting to Pandas DataFrames brings the 
data to the client, negating the benefits of Snowpark's distributed processing. Option E is dangerous 
since it could cause bottleneck if the resources are not managed correctly. 

Question: 12 
   
You have a Snowpark Python application that interacts with Snowflake using a service account. You are 
rotating the private key associated with the service account. After updating the private key in your 
application's configuration, you encounter an error during the connection attempt: 
‘SnowflakeSQLException: 390103 (OSAOO): Failed to connect to DB. Encountered exception while 
creating connection: Authentication token has expired.' What is the MOST likely cause of this error, and 
what steps should you take to resolve it? 
 
A. The Snowflake cache still holds the old private key. Clear the Snowflake connection cache in the 
application by calling and restarting the application. 
B. The Snowflake service account hasn't been granted sufficient permissions to access the required 
resources. Re-grant the necessary roles and privileges to the service account. 
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C. The public key associated with the new private key has not been authorized in Snowflake for the 
service account. Ensure that the public key is associated with the service account using ALTER SERVICE 
ACCOUNT SET RSA PUBLIC KEY =”;’ 
D. The private key is in an incorrect format. Ensure that the private key is in PKCS#8 format and is 
properly encoded. 
E. The connection string contains invalid characters. Ensure the account identifier and other parameters 
are correctly specified. 
 

Answer: C     
 
Explanation: 
The error 'Authentication token has expired' in the context of a service account and private key rotation 
strongly suggests that the Snowflake instance has not been updated with the new public key that 
corresponds to the updated private key. Snowflake uses the public key to verify the authenticity of the 
client using the private key. Option C directly addresses this: The public key must be updated in 
Snowflake using the 'ALTER SERVICE ACCOUNT command to match the new private key being used by 
the application. Option A, although potentially helpful in other scenarios, does not address the core 
issue of mismatched key pairs. Options B, D, and E address other potential problems but are less likely in 
this specific scenario where the error occurs after a key rotation. 

Question: 13 
   
You are tasked with building a Snowpark application to process sensor data from IoT devices. The data 
arrives as JSON strings and needs to be transformed into a tabular format before being stored in a 
Snowflake table. You decide to use a User-Defined Table Function (UDTF) written in Python to handle 
this transformation. Which of the following approaches is the MOST efficient and scalable way to deploy 
and execute this UDTF in a production Snowpark environment, considering the possibility of high data 
volumes and concurrency? 
 
A. Deploy the UDTF as an inline Python function within the Snowpark DataFrame transformation code, 
relying on the client-side Python interpreter for execution. 
B. Deploy the UDTF using the '@udtf decorator and explicitly specify a parameter when registering the 
function to control the size of input batches processed by each worker node. 
C. Deploy the UDTF as a stored procedure that is then called from your Snowpark application. The UDTF 
processes the data serially, one record at a time. 
D. Deploy the UDTF as an external function, leveraging an external API gateway to invoke the Python 
code running on a serverless compute platform. 
E. Package the Python UDTF into a zip file and upload it to a Snowflake stage. During UDTF registration, 
specify the stage location and use [...l, return_type=..., packages=['snowflake-snowpark-python', 
'your_package'])'. Ensure that is appropriately tuned based on data size and complexity. 
 

Answer: E     
 
Explanation: 
Option E is the MOST efficient and scalable. Deploying the UDTF with explicit package management and 
optimized batch sizing allows Snowflake to distribute the processing across multiple worker nodes, 
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leveraging the platform's parallel processing capabilities. Specifying dependencies using the ‘packages’ 
parameter ensures that the required Python libraries are available on each worker node. Properly tuning 
max_batch_size’ prevents memory exhaustion and optimizes processing speed. Options A, C, and D are 
generally less scalable and efficient due to client-side execution, serial processing, or added external 
latency. Option B is correct in mentioning batch sizing, but is incomplete. Option E offers the best 
balance of performance, scalability, and maintainability. 

Question: 14 
   
You have a Snowpark Python application that reads data from a Snowflake table named 'SALES DATA', 
performs several transformations using DataFrames, and then writes the results back to a new table 
named 'AGGREGATED SALES'. The application runs successfully, but you notice that the write operation 
to 'AGGREGATED SALES' is consistently slow. After examining the query profile, you observe significant 
skew in the data being written, causing some worker nodes to be overloaded. Which of the following 
techniques could you use within your Snowpark application to mitigate the data skew and improve the 
write performance to 'AGGREGATED SALES'? 
 
A. Increase the size of the Snowflake warehouse being used to execute the Snowpark application. This 
will provide more compute resources to handle the data skew. 
B. Use the method to evenly redistribute the data across a larger number of partitions before writing it 
to 'AGGREGATED SALES'. 
C. Use the 'DataFrame.sort(col)' method to sort the data by the skew key before writing it to 
'AGGREGATED SALES'. This will ensure that rows with similar values are processed by the same worker 
node. 
D. Implement custom partitioning logic using a User-Defined Function (UDF) that calculates a hash value 
based on the skew key and then uses the 'DataFrame.repartitionByRange(col)' method to partition the 
data based on the hash values. 
E. Use the method to specify a clustering key on the 'AGGREGATED SALES' table during table creation. 
This will physically organize the data on disk based on the skew key, improving write performance. 
 

Answer: B,D     
 
Explanation: 
Both options B and D address data skew directly. Option B, , attempts to redistribute data evenly, which 
can alleviate skew if the repartitioning strategy is effective (e.g., using a hash function). Option D, using a 
UDF and 'repartitionByRange’ , allows for more sophisticated custom partitioning based on the skew 
key, potentially achieving a more balanced distribution. Increasing warehouse size (A) might provide 
more resources, but it doesn't directly address the skew. Sorting (C) can exacerbate skew by 
concentrating similar values on single nodes. Clustering (E) improves read performance after the data is 
written, but does not improve the write performance itself. Therefore, B and D are the best choices to 
reduce skew during the write operation. 

Question: 15 
   
Consider the following Snowpark Python code snippet that defines and registers a User-Defined Table 
Function (UDTF): 
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Which of the following statements is MOST accurate regarding the behavior and limitations of this UDTF 
when used in a Snowpark DataFrame transformation? 
 
A. The UDTF will process each input string in parallel, with Snowflake automatically distributing the 
processing across multiple worker nodes. 
B. The UDTF can only be used with DataFrames that have been explicitly persisted as Snowflake tables. 
C. The 'input_string’ argument passed to the ‘process' method will always be a single string value, even 
if the input DataFrame column contains NULL values. 
D. The UDTF will be executed within the same Python process as the Snowpark driver program, limiting 
its scalability for large datasets. 
E. If the input DataFrame column contains NULL values, the ‘process' method will receive 'None' as the 
value for 'input_string’. The ‘output_schema’ correctly defines the structure of the output rows. 
 

Answer: E     
 
Explanation: 
Option E is the most accurate. When a Snowpark UDTF receives NULL as input, it's passed as ‘None' in 
Python. The provided code defines the ‘output_schema’ which describes the structure and types of the 
rows that the UDTF will return. Option A is incorrect because, while Snowflake distributes UDTF 
processing, the code itself doesn't guarantee parallelism within a single input string. Option B is 
incorrect; UDTFs can be used with any DataFrame, regardless of whether it's backed by a persistent 
table. Option C is incorrect because NULL values in the input DataFrame will be passed as 'None’ to the 
‘process’ method. Option D is incorrect; Snowpark distributes UDTF execution across worker nodes, not 
within the driver process. 
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